Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 121(21): e2319652121, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38739805

RESUMO

The last glacial period was punctuated by cold intervals in the North Atlantic region that culminated in extensive iceberg discharge events. These cold intervals, known as Heinrich Stadials, are associated with abrupt climate shifts worldwide. Here, we present CO2 measurements from the West Antarctic Ice Sheet Divide ice core across Heinrich Stadials 2 to 5 at decadal-scale resolution. Our results reveal multi-decadal-scale jumps in atmospheric CO2 concentrations within each Heinrich Stadial. The largest magnitude of change (14.0 ± 0.8 ppm within 55 ± 10 y) occurred during Heinrich Stadial 4. Abrupt rises in atmospheric CO2 are concurrent with jumps in atmospheric CH4 and abrupt changes in the water isotopologs in multiple Antarctic ice cores, the latter of which suggest rapid warming of both Antarctica and Southern Ocean vapor source regions. The synchroneity of these rapid shifts points to wind-driven upwelling of relatively warm, carbon-rich waters in the Southern Ocean, likely linked to a poleward intensification of the Southern Hemisphere westerly winds. Using an isotope-enabled atmospheric circulation model, we show that observed changes in Antarctic water isotopologs can be explained by abrupt and widespread Southern Ocean warming. Our work presents evidence for a multi-decadal- to century-scale response of the Southern Ocean to changes in atmospheric circulation, demonstrating the potential for dynamic changes in Southern Ocean biogeochemistry and circulation on human timescales. Furthermore, it suggests that anthropogenic CO2 uptake in the Southern Ocean may weaken with poleward strengthening westerlies today and into the future.

2.
Nat Geosci ; 16(4): 349-356, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37064010

RESUMO

Uncertainties persist in the understanding of the Atlantic meridional overturning circulation and its response to external perturbations such as freshwater or radiative forcing. Abrupt reduction of the Atlantic circulation is considered a climate tipping point that may have been crossed when Earth's climate was propelled out of the last ice age. However, the evolution of the circulation since the Last Glacial Maximum (22-18 thousand years ago) remains insufficiently constrained due to model and proxy limitations. Here we leverage information from both a compilation of proxy records that track various aspects of the circulation and climate model simulations to constrain the Atlantic circulation over the past 20,000 years. We find a coherent picture of a shallow and weak Atlantic overturning circulation during the Last Glacial Maximum that reconciles apparently conflicting proxy evidence. Model-data comparison of the last deglaciation-starting from this new, multiple constrained glacial state-indicates a muted response during Heinrich Stadial 1 and that water mass geometry did not fully adjust to the strong reduction in overturning circulation during the comparably short Younger Dryas period. This demonstrates that the relationship between freshwater forcing and Atlantic overturning strength is strongly dependent on the climatic and oceanic background state.

3.
Environ Sci Technol ; 2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36608262

RESUMO

The distributed consensus mechanism is the backbone of the rapidly developing blockchain network. Blockchain platforms consume vast amounts of electricity based on the current consensus mechanism of Proof-of-Work (PoW). Here, we point out a different consensus mechanism named Proof-of-Stake (PoS) that can eliminate the extensive energy consumption of the current PoW-based blockchain. We comprehensively elucidate the current and projected energy consumption and carbon footprint of the PoW- and PoS-based Bitcoin and Ethereum blockchain platforms. The model of energy consumption of PoS-based Ethereum blockchain can lead the way toward the prediction of other PoS-based blockchain technologies in the future. With the widespread adoption of blockchain technology, if the current PoW mechanism continues to be employed, the carbon footprint of Bitcoin and Ethereum will push the global temperature above 1.5 °C in this century. However, a PoS-based blockchain can reduce the carbon footprint by 99% compared to the PoW mechanism. The small amount of carbon footprint from PoS-based blockchain could make blockchain an attractive technology in a carbon-constrained future. The study sheds light on the urgency of developing the PoS mechanism to solve the current sustainability problem of blockchain.

4.
J Environ Manage ; 303: 113935, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34836677

RESUMO

The principle of "common but differentiated responsibility", as a key concept of the United Nations Framework Convention on Climate Change (UNFCCC), acknowledges the conditions for a generally acceptable and differentiated pricing mechanism on carbon emissions. With reference to this principle, carbon price determination has become a necessary instrument for sustainable policies. Considering the development gaps and the historical responsibility of the OECD's countries, a single carbon price would raise a major issue of equity between "developed" and "developing" countries. Although from a climate perspective each molecule of CO2 produces the same level of damage despite the nature or the location of the activity generating the emissions, all CO2 emissions are not on an equal footing. Indeed, some are necessary to improve the lives of people in "developing" countries when others can be considered not indispensable, especially beyond a certain level of development. In this policy paper, we explain how the price of carbon should be fixed according to a reference price depending on the Human Development Index (HDI) and CO2 emissions per capita. The HDI criterion enables to integrate progressivity into taxation while distinguishing what is essential from what is not. By taking a reference price based on the HDI, countries with low HDIs should pay a lower carbon price. However, with same HDI levels, countries with higher CO2 emissions should pay a penalty on the reference price. Our policy paper analyses the benefits of a differentiated and progressive carbon pricing mechanism to facilitate intergovernmental cooperation for a more sustainable economy.


Assuntos
Carbono , Impostos , Dióxido de Carbono , Mudança Climática , Humanos , Nações Unidas
5.
Science ; 367(6485): 1425-1426, 2020 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-32217713

Assuntos
Clima , Água , Ecossistema
7.
Science ; 350(6262): 764-5, 2015 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-26564844

RESUMO

The most recent comprehensive assessment carried out by the Intergovernmental Panel on Climate Change has concluded that "Human influence on the climate system is clear," a headline statement that was approved by all governments in consensus. This influence will have long-lasting consequences for ecosystems, and the resulting impacts will continue to be felt millennia from now. Although the terrestrial impacts of climate change are readily apparent now and have received widespread public attention, the effects of climate change on the oceans have been relatively invisible. However, the world ocean provides a number of crucial services that are of global significance, all of which come with an increasing price caused by human activities. This needs to be taken into account when considering adaptation to and mitigation of anthropogenic climate change.


Assuntos
Mudança Climática , Atividades Humanas , Abastecimento de Alimentos , Humanos , Oceanos e Mares
8.
Nature ; 516(7530): 234-7, 2014 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-25503236

RESUMO

Nitrous oxide (N2O) is an important greenhouse gas and ozone-depleting substance that has anthropogenic as well as natural marine and terrestrial sources. The tropospheric N2O concentrations have varied substantially in the past in concert with changing climate on glacial-interglacial and millennial timescales. It is not well understood, however, how N2O emissions from marine and terrestrial sources change in response to varying environmental conditions. The distinct isotopic compositions of marine and terrestrial N2O sources can help disentangle the relative changes in marine and terrestrial N2O emissions during past climate variations. Here we present N2O concentration and isotopic data for the last deglaciation, from 16,000 to 10,000 years before present, retrieved from air bubbles trapped in polar ice at Taylor Glacier, Antarctica. With the help of our data and a box model of the N2O cycle, we find a 30 per cent increase in total N2O emissions from the late glacial to the interglacial, with terrestrial and marine emissions contributing equally to the overall increase and generally evolving in parallel over the last deglaciation, even though there is no a priori connection between the drivers of the two sources. However, we find that terrestrial emissions dominated on centennial timescales, consistent with a state-of-the-art dynamic global vegetation and land surface process model that suggests that during the last deglaciation emission changes were strongly influenced by temperature and precipitation patterns over land surfaces. The results improve our understanding of the drivers of natural N2O emissions and are consistent with the idea that natural N2O emissions will probably increase in response to anthropogenic warming.


Assuntos
Organismos Aquáticos/metabolismo , Atmosfera/química , Camada de Gelo , Óxido Nitroso/metabolismo , Regiões Antárticas , Aquecimento Global , História Antiga , Isótopos de Nitrogênio/análise , Óxido Nitroso/análise , Óxido Nitroso/história , Isótopos de Oxigênio/análise , Chuva , Temperatura , Fatores de Tempo
10.
Nature ; 499(7457): 197-201, 2013 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-23823728

RESUMO

Climate targets are designed to inform policies that would limit the magnitude and impacts of climate change caused by anthropogenic emissions of greenhouse gases and other substances. The target that is currently recognized by most world governments places a limit of two degrees Celsius on the global mean warming since preindustrial times. This would require large sustained reductions in carbon dioxide emissions during the twenty-first century and beyond. Such a global temperature target, however, is not sufficient to control many other quantities, such as transient sea level rise, ocean acidification and net primary production on land. Here, using an Earth system model of intermediate complexity (EMIC) in an observation-informed Bayesian approach, we show that allowable carbon emissions are substantially reduced when multiple climate targets are set. We take into account uncertainties in physical and carbon cycle model parameters, radiative efficiencies, climate sensitivity and carbon cycle feedbacks along with a large set of observational constraints. Within this framework, we explore a broad range of economically feasible greenhouse gas scenarios from the integrated assessment community to determine the likelihood of meeting a combination of specific global and regional targets under various assumptions. For any given likelihood of meeting a set of such targets, the allowable cumulative emissions are greatly reduced from those inferred from the temperature target alone. Therefore, temperature targets alone are unable to comprehensively limit the risks from anthropogenic emissions.


Assuntos
Dióxido de Carbono/análise , Mudança Climática/estatística & dados numéricos , Modelos Teóricos , Atmosfera/química , Teorema de Bayes , Ciclo do Carbono , Clima , Retroalimentação , Previsões , Combustíveis Fósseis , Efeito Estufa/estatística & dados numéricos , Temperatura , Fatores de Tempo , Incerteza
12.
Proc Natl Acad Sci U S A ; 109(25): 9755-60, 2012 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-22675123

RESUMO

Important elements of natural climate variations during the last ice age are abrupt temperature increases over Greenland and related warming and cooling periods over Antarctica. Records from Antarctic ice cores have shown that the global carbon cycle also plays a role in these changes. The available data shows that atmospheric CO(2) follows closely temperatures reconstructed from Antarctic ice cores during these variations. Here, we present new high-resolution CO(2) data from Antarctic ice cores, which cover the period between 115,000 and 38,000 y before present. Our measurements show that also smaller Antarctic warming events have an imprint in CO(2) concentrations. Moreover, they indicate that during Marine Isotope Stage (MIS) 5, the peak of millennial CO(2) variations lags the onset of Dansgaard/Oeschger warmings by 250 ± 190 y. During MIS 3, this lag increases significantly to 870 ± 90 y. Considerations of the ocean circulation suggest that the millennial variability associated with the Atlantic Meridional Overturning Circulation (AMOC) undergoes a mode change from MIS 5 to MIS 4 and 3. Ocean carbon inventory estimates imply that during MIS 3 additional carbon is derived from an extended mass of carbon-enriched Antarctic Bottom Water. The absence of such a carbon-enriched water mass in the North Atlantic during MIS 5 can explain the smaller amount of carbon released to the atmosphere after the Antarctic temperature maximum and, hence, the shorter lag. Our new data provides further constraints for transient coupled carbon cycle-climate simulations during the entire last glacial cycle.

13.
Science ; 336(6082): 711-4, 2012 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-22461496

RESUMO

The stable carbon isotope ratio of atmospheric CO(2) (δ(13)C(atm)) is a key parameter in deciphering past carbon cycle changes. Here we present δ(13)C(atm) data for the past 24,000 years derived from three independent records from two Antarctic ice cores. We conclude that a pronounced 0.3 per mil decrease in δ(13)C(atm) during the early deglaciation can be best explained by upwelling of old, carbon-enriched waters in the Southern Ocean. Later in the deglaciation, regrowth of the terrestrial biosphere, changes in sea surface temperature, and ocean circulation governed the δ(13)C(atm) evolution. During the Last Glacial Maximum, δ(13)C(atm) and atmospheric CO(2) concentration were essentially constant, which suggests that the carbon cycle was in dynamic equilibrium and that the net transfer of carbon to the deep ocean had occurred before then.


Assuntos
Atmosfera , Ciclo do Carbono , Isótopos de Carbono , Mudança Climática , Camada de Gelo , Água do Mar , Regiões Antárticas , Dióxido de Carbono , Oceanos e Mares , Temperatura , Tempo , Movimentos da Água
15.
Nature ; 461(7263): 507-10, 2009 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-19779448

RESUMO

Reconstructions of atmospheric CO(2) concentrations based on Antarctic ice cores reveal significant changes during the Holocene epoch, but the processes responsible for these changes in CO(2) concentrations have not been unambiguously identified. Distinct characteristics in the carbon isotope signatures of the major carbon reservoirs (ocean, biosphere, sediments and atmosphere) constrain variations in the CO(2) fluxes between those reservoirs. Here we present a highly resolved atmospheric delta(13)C record for the past 11,000 years from measurements on atmospheric CO(2) trapped in an Antarctic ice core. From mass-balance inverse model calculations performed with a simplified carbon cycle model, we show that the decrease in atmospheric CO(2) of about 5 parts per million by volume (p.p.m.v.). The increase in delta(13)C of about 0.25 per thousand during the early Holocene is most probably the result of a combination of carbon uptake of about 290 gigatonnes of carbon by the land biosphere and carbon release from the ocean in response to carbonate compensation of the terrestrial uptake during the termination of the last ice age. The 20 p.p.m.v. increase of atmospheric CO(2) and the small decrease in delta(13)C of about 0.05 per thousand during the later Holocene can mostly be explained by contributions from carbonate compensation of earlier land-biosphere uptake and coral reef formation, with only a minor contribution from a small decrease of the land-biosphere carbon inventory.


Assuntos
Dióxido de Carbono/metabolismo , Carbono/análise , Carbono/metabolismo , Camada de Gelo/química , Ar/análise , Animais , Regiões Antárticas , Antozoários/crescimento & desenvolvimento , Antozoários/metabolismo , Atmosfera/química , Dióxido de Carbono/análise , Isótopos de Carbono , Clima , Ecossistema , História Antiga , Fatores de Tempo
16.
Environ Sci Technol ; 43(14): 5371-6, 2009 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-19708368

RESUMO

Methane (CH4) is the second most important anthropogenic greenhouse gas in the atmosphere. Rapid variations of the CH4 concentration, as frequently registered, for example, during the last ice age, have been used as reliable time markers for the definition of a common time scale of polar ice cores. In addition, these variations indicate changes in the sources of methane primarily associated with the presence of wetlands. In order to determine the exact time evolution of such fast concentration changes, CH4 measurements of the highest resolution in the ice core archive are required. Here, we present a new, semicontinuous and field-deployable CH4 detection method, which was incorporated in a continuous flow analysis (CFA) system. In CFA, samples cut along the axis of an ice core are melted at a melt speed of typically 3.5 cm/min. The air from bubbles in the ice core is extracted continuously from the meltwater and forwarded to a gas chromatograph (GC) for high-resolution CH4 measurements. The GC performs a measurement every 3.5 min, hence, a depth resolution of 15 cm is achieved atthe chosen melt rate. An even higher resolution is not necessary due to the low pass filtering of air in ice cores caused by the slow bubble enclosure process and the diffusion of air in firn. Reproducibility of the new method is 3%, thus, for a typical CH4 concentration of 500 ppb during an ice age, this corresponds to an absolute precision of 15 ppb, comparable to traditional analyses on discrete samples. Results of CFA-CH4 measurements on the ice core from Talos Dome (Antarctica) illustrate the much higher temporal resolution of our method compared with established melt-refreeze CH4 measurements and demonstrate the feasibility of the new method.


Assuntos
Cromatografia , Monitoramento Ambiental/métodos , Fracionamento por Campo e Fluxo , Gelo/análise , Metano/análise , Regiões Antárticas , Atmosfera/química , Calibragem , Cromatografia/instrumentação , Cromatografia/métodos , Clima , Fracionamento por Campo e Fluxo/instrumentação , Fracionamento por Campo e Fluxo/métodos , Humanos , Reprodutibilidade dos Testes
17.
Environ Sci Technol ; 42(21): 8039-43, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19031899

RESUMO

Ice cores are a widely used archive to reconstruct past changes of the climate system. This is done by measuring the concentration of substances in the ice and in the air of bubbles enclosed in ice. Some species pertaining to the carbon cycle (e.g., CO2, CH4) are routinely measured. However, information about the organic fraction of the impurities in polar ice is still very limited. Therefore, we developed a new method to determine the content of total organic carbon (TOC) in ice cores using a continuous flow analysis (CFA) system. The method is based on photochemical oxidation of TOC and the electrolytic quantification of the CO2 produced during oxidation. The TOC instrument features a limit of detection of 2 ppbC and a response time of 60 s at a sample flow rate of 0.7 mL/min and a linear measurement range of 2-4000 ppbC. First measurements on the ice core from Talos Dome, Antarctica, reveal TOC concentrations varying between 80 and 360 ppbC in the 20 m section presented.


Assuntos
Carbono/análise , Química Orgânica/métodos , Gelo/análise , Compostos Orgânicos/análise , Regiões Antárticas , Oxirredução , Ácidos Ftálicos/química , Padrões de Referência
18.
Environ Sci Technol ; 42(21): 8044-50, 2008 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19031900

RESUMO

Continuous flow analysis (CFA) is a well-established method to obtain information about impurity contents in ice cores as indicators of past changes in the climate system. A section of an ice core is continuously melted on a melter head supplying a sample water flow which is analyzed online. This provides high depth and time resolution of the ice core records and very efficient sample decontamination as only the inner part of the ice sample is analyzed. Here we present an improved CFA system which has been totally redesigned in view of a significantly enhanced overall efficiency and flexibility, signal quality, compactness, and ease of use. These are critical requirements especially for operations of CFA during field campaigns, e.g., in Antarctica or Greenland. Furthermore, a novel deviceto measure the total air content in the ice was developed. Subsequently, the air bubbles are now extracted continuously from the sample water flow for subsequent gas measurements.


Assuntos
Técnicas de Química Analítica/métodos , Gelo/análise , Calibragem , Groenlândia , Reprodutibilidade dos Testes , Temperatura
20.
Nature ; 453(7193): 379-82, 2008 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-18480821

RESUMO

Changes in past atmospheric carbon dioxide concentrations can be determined by measuring the composition of air trapped in ice cores from Antarctica. So far, the Antarctic Vostok and EPICA Dome C ice cores have provided a composite record of atmospheric carbon dioxide levels over the past 650,000 years. Here we present results of the lowest 200 m of the Dome C ice core, extending the record of atmospheric carbon dioxide concentration by two complete glacial cycles to 800,000 yr before present. From previously published data and the present work, we find that atmospheric carbon dioxide is strongly correlated with Antarctic temperature throughout eight glacial cycles but with significantly lower concentrations between 650,000 and 750,000 yr before present. Carbon dioxide levels are below 180 parts per million by volume (p.p.m.v.) for a period of 3,000 yr during Marine Isotope Stage 16, possibly reflecting more pronounced oceanic carbon storage. We report the lowest carbon dioxide concentration measured in an ice core, which extends the pre-industrial range of carbon dioxide concentrations during the late Quaternary by about 10 p.p.m.v. to 172-300 p.p.m.v.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...